277 research outputs found

    Wet-chemical synthesis of enhanced-thermopower Bi1-xSbx nanowire composites for solid-state active cooling of electronics

    Get PDF
    In 1993, Hicks and Dresselhaus [Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993).] suggested that Bi nanowires could result in values of the thermoelectric figure of merit zT > 1. The Dresselhaus group also calculated a ternary phase diagram for Bi1-xSbx nanowires as a function of x and wire diameter. This manuscript reports a wet-chemical method to synthesize Bi1-xSbx-silica nanowire composites. Resistivity, Hall electron concentration, electron mobility, Seebeck and Nernst coefficients, and thermal conductivity of composites are measured and compared to bulk polycrystalline Bi1-xSbx samples prepared either by ingot casting or by the same wet chemistry but without nanostructuring. A clear increase of the thermopower in 20-nm Bi94Sb6-silica is reported when compared to bulk samples, and the values are among the highest found in the literature from 300 to 380 K, even though the electron concentration is higher than in the bulk. This suggests that consistent with theory, size quantization is responsible for the thermopower increase

    Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process

    Get PDF
    High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Magnetoresistance in Sn-Doped In2O3Nanowires

    Get PDF
    In this work, we present transport measurements of individual Sn-doped In2O3nanowires as a function of temperature and magnetic field. The results showed a localized character of the resistivity at low temperatures as evidenced by the presence of a negative temperature coefficient resistance in temperatures lower than 77 K. The weak localization was pointed as the mechanism responsible by the negative temperature coefficient of the resistance at low temperatures

    Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics

    Get PDF
    We present nanocrystalline PbS, which was prepared using a solvothermal method followed by spark plasma sintering, as a promising thermoelectric material. The effects of grains with different length scales on phonon scattering of PbS samples, and therefore on the thermal conductivity of these samples, were studied using transmission electron microscopy and theoretical calculations. We found that a high density of nanoscale grain boundaries dramatically lowered the thermal conductivity by effectively scattering long-wavelength phonons. The thermal conductivity at room temperature was reduced from 2.5 W m1K 1 for ingot-PbS (grain size 4200 lm) to 2.3 W m1K 1 for micro-PbS (grain size 40.4 lm); remarkably, thermal conductivity was reduced to 0.85 W m1 K 1 for nano-PbS (grain size B30 nm). Considering the full phonon spectrum of the material, a theoretical model based on a combination of first-principles calculations and semiempirical phonon scattering rates was proposed to explain this effective enhancement. The results show that the high density of nanoscale grains could cause effective phonon scattering of almost 61%. These findings shed light on developing high-performance thermoelectrics via nanograins at the intermediate temperature range.This contribution was supported primarily by the startup of the South University of Science and Technology of China, supported by the Shenzhen government, and the national 1000 plan for young scientists. This work was also partially supported by a grant-in-aid of ‘985 Project’ from Xi’an Jiaotong University, the National Natural Science Foundation of China (Grant No. 21201138 and 11204228), the National Basic Research Program of China (2012CB619402 and 2014CB644003) and the Fundamental Research Funds for the Central UniversitiesS

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Synthesis and Thermoelectric Properties of Bi2Se3 Nanostructures

    Get PDF
    Bismuth selenide (Bi2Se3) nanostructures were synthesized via solvothermal method. The crystallinity of the as-synthesized sample has been analyzed by X-ray diffraction, which shows the formation of rhombohedral Bi2Se3. Electron microscopy examination indicates that the Bi2Se3 nanoparticles have hexagonal flake-like shape. The effect of the synthesis temperature on the morphology of the Bi2Se3 nanostructures has also been investigated. It is found that the particle size increases with the synthesis temperature. Thermoelectric properties of the Bi2Se3 nanostructures were also measured, and the maximum value of dimensionless figure of merit (ZT) of 0.096 was obtained at 523 K

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Get PDF
    A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO3)3 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures
    corecore